US009448827B1

a2 United States Patent (10) Patent No.: US 9,448,827 B1
Allen 45) Date of Patent: Sep. 20, 2016
(54) STUB DOMAIN FOR REQUEST SERVICING 2008/0107064 A1* 5/2008 Eroletal.ccco........ 370/316

2008/0123854 Al* 5/2008 Peel et al.
2008/0163248 Al* 7/2008 Chen
2008/0307190 Al* 12/2008 Arndt et al.

... 380/277
. 719/313

(71) Applicant: Amazon Technologies, Inc., Reno, NV 211703

(Us) 2009/0007100 Al* 1/2009 Field et al. ... e 71871
2009/0204963 Al* 82009 Swart et al. 718/1
(72) Inventor: Nicholas Alexander Allen, Seattle, WA 2010/0070678 Al* 3/2010 Zhang et al. . e 7116
(US) 2011/0099267 Al1* 4/2011 Suri et al. ... 709/224
2011/0252271 A1* 10/2011 Frenkel et al. . 714/4.1
. . 2012/0117563 Al1* 5/2012 Chang et al. 718/1
(73) Assignee: Amazon Technologies, Inc., Seattle, 2012/0227038 Al* 9/2012 Hunt et al. 71871
WA (US) 2012/0233435 Al* 9/2012 Ben-Yehuda et al. 711/170
2012/0254866 Al* 10/2012 Iwamatsu et al. 718/1
(*) Notice: Subject to any disclaimer, the term of this 583;85%322 ﬁi: Hgg}% ghargaVa ~~~~~~ - 7%?/12/2
H H urrant
%atseg B Sixiengedlzog (aldJuSted under 33 2013/0155083 Al* 6/2013 McKenzie et al. . 345/522
S.C. 154(b) by ays. 2013/0160011 AL* 62013 Cofie 7181
2013/0227553 Al* 82013 Tsirkin et al. ... 718/1
(21) Appl. No.: 14/106,644 2013/0339568 AL* 12/2013 COITie oooomrrrrrrreccicecmrnnnens 711/6
2014/0089907 Al* 3/2014 Cabillic et al. 717/147
(22) Filed: Dec. 13, 2013 (Continued)
(51) Int.CL Primary Examiner — Emerson Puente
GO6F 9/455 (2006.01) Assistant Examiner — Mehran Kamran
(52) US.CL (74) Attorney, Agent, or Firm — Davis Wright Tremaine
GOG6F 9/45533 (2013.01) LLP
58) Field of Classification Search
(5®) None 57 ABSTRACT
See application file for complete search history. Techniques for reclaiming resources from guest computing
systems while those systems are waiting for responses to
(56) References Cited requests in virtualized and/or distributed computer systems
US. PATENT DOCUMENTS are described herein. At a time after issuing a request and
e determining that the response will take longer than a thresh-
6.134,581 A * 10/2000 Ismael etal. ... 709/202 old length of time, one or more computer system entities
6,751,798 B1* 6/2004 Schofield 719/330 within a computer system invoke one or more computer
6,851,118 BL1* 2/2005 Ismael et al. ... 719/330 system capabilities to at least instantiate a listener object,
6,868,543 B1* 3/2005 Nusbickel 719318 transfer the listener object to another system domain, sus-
g’}t?g’ﬁg g} N iggg ﬁ;régizn‘:itﬁé’ etal 702/1281/1 pend the guest computing system and reclaim resources
8:424:007 Bl* 4/2013 Hernacki et al. """ ';18/103 from the suspended guest computing system. When the
8,924,534 B2* 12/2014 Suri et al. ..cccooovevnennn.n. 709/224 response is returned to the listener object, the guest com-
2007/0156981 Al* 7/2007 Bitner et al . T11/159 puter system is restored and the response is forwarded to the
2007/0157001 Al: 7/2007 Ritzau ... e TH/L70 restored guest. While the guest computing system is sus-
%88;;8552852 ﬁi N ?ggg; IliI(i)i(hf)tlfsl'etnz'l'l. ;??ﬁé(}) pended, the reclaimeq resources are made available to other
2008/0052181 Al* 2/2008 Devitt-Carolan et al. 705/26 ~ computer system entities.
2008/0072244 Al* 3/2008 Eker et al. 719/330
2008/0086567 Al* 4/2008 Langen et al. 709/230 24 Claims, 13 Drawing Sheets

300

. J

Listener Stub

Stub Domain

304

Prepare Response

\ 320

302

Transmit
Response

Suspend Storage

326

Suspended
Virtual
Machine

Restore
Suspended
Virtual Machine

Restore

316 328

- 308

AV 4
[Controlling Domain]

US 9,448,827 B1
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

2014/0149490 Al*
2014/0164723 Al*
2014/0165060 Al*
2014/0168293 Al*

5/2014 Luxenberg et al. 709/203
6/2014 Garthwaite et al. 711/162
6/2014 Muller et al. 718/1
6/2014 Moreau et al.coeoo.e. 347/2

2014/0173213 Al*
2014/0181291 Al*
2015/0032884 Al*
2015/0074685 Al*
2015/0150002 Al*

* cited by examiner

6/2014
6/2014
1/2015
3/2015
5/2015

Beveridgeccccceenn 711/130
Palazzolo ... 709/224
Greifeneder et al. 709/224
Baeuerle et al. 719/318
Kruglick ..oocooveveiiine 718/1

US 9,448,827 B1

Sheet 1 of 13

Sep. 20, 2016

U.S. Patent

l "Old

ot 9eL Ot

SUUTBN A 3\ SUIYIBA 8LL N SUIUDIBIA 801 N SUILDBI
[BOLIA {ENIA [BrAEA [eriA
ISEND BJ0ISSH papusdsng puadsng Bumesa asuodssy 188N5
G HBAA
JBUBISIT
LBAIBOEY 2 o bl
ssuodsoy qwhmmwwm 901
A gl Lt 18anbayy
IeuUsISiT 2\ JBUBISH]
asundsay asuodssy
asuadsay
O} A
ssuodssy
0t
0L

NIOAIBN

QoL

US 9,448,827 B1

Sheet 2 of 13

Sep. 20, 2016

U.S. Patent

174

POe

¢ Old

UiBwog Buijoqued

e

BLZ

Pid N BUILITRIA

{eniiAn

(A4
80¢ 3\
gris Isusisi BUORIN
ams [ENA 188N
wewoq qnis JOUDISIT
B1B840
e 1senhbay

puadsng pspuadsng

sbeioig puadsng |

US 9,448,827 B1

Sheet 3 of 13

Sep. 20, 2016

U.S. Patent

€ 'Old

ie

uigLioE Bujonusy

VAN

3015

208

gze
BUILDBIN

[BIA

gle At

SUILDEW BrLIA

FUILIDBI

1SaNgy 210183} TN pepuadang
papusdsng BI015Y
gz¢e 8su0dsey abeioiq pusdang
HSUBL L d
Zee
coE pOE
0ce 3\

SsUCdsa Y qrasg Jeuss
ssuadssy airdsid

qmsS eueIs uIBLUON QIS

90¢
asuadssyy
00g

US 9,448,827 B1

Sheet 4 of 13

Sep. 20, 2016

U.S. Patent

¥ "Old

wistueaau Bugndwon

»0b weoe Buionue)

v UIeIo Bulicaussy

ams
Busien

ulBLIOQ gMiS

J

sba

0¥

SUILDTBI
[BILIA
188N15)

0¥

SUILTRIN
[eniiia
188n9

BUILOBINY

[ENLA
papusdsng

019 pusdsng

gqms
JBUBISIT

amsg

IBUBIS]

WELIOG gMS

0oy

WSISAS Jenduion 1S0H

FURORIN
[ERL A
popusdsng

FAi cov

suyosp | | suiyoewy
[BHIA {BNA
IsENg 158Ng)

SLUDIBIA
EmaA
papusdsng

ebeins pusdsng

WMsAS Jondwns 180H

U.S. Patent Sep. 20, 2016 Sheet 5 of 13 US 9,448,827 B1

500
A Reguest to a Remote System is
Sent that Requires a Response U spo

Other
work that
gshould be

done’? 504

Yeg————» Do other work

Response
Arrival Time enough

L 506

fo justify
suspension?

v

[idie and Wait for

)

Response
o510

Yes
+.
Create Listener Response No Response
Stub Received? Timeout?
U
514 512 518
v
Suspend Viriual
Machine Yes T—
s L ‘
816 Response U s2¢
Yes
Listener Stub ——
Receives Yes—p R"?;erh‘i\'sfua’
Response? \ — hal
$ A 4
522 Process
Response
No No Timeout
\ 532
Response [Restore Virtual
Timeout? Yes Machine |\ 558

FIG. 5

A 4

Alert Virtual Machine of
Response Timeout

\ 530

US 9,448,827 B1

Sheet 6 of 13

Sep. 20, 2016

U.S. Patent

809 LONBULION]
SUILDBI UORBUNSS(]
180

19HD0Q

HOd

0RO

UCIELLUOIU] YIOMIBN

&

.

ﬂ N
gz Uy e
Z'Z Uy e
BuIuoEN

[BNLIA BI0ISTY o

L'Z UoHOY e

JspueH

leUORIPUOD PLCaS |

909

9 "OId

zi9

L UoHDY e
LT, UOHDY e

SUIUSEN

IBNLUA I0ISEY e

JolpUBH
[BUOHIPUOD 1841
719 Zi8
JB|puen JapueH
[BUGIIPUCS) BUGIHPUOT
puCoes 18414 709

319

UORBWIOI SUIUDRIA] |ENLIA

BUILOBIN

[BIHIA

A Y09

909 /LAl

UOBRULIGI] HIOMIBN

gl Jeusishy

qmig Buiuensy

19815

US 9,448,827 B1

Sheet 7 of 13

Sep. 20, 2016

U.S. Patent

004

L "Old

Y04

uielio Bullohuos

GLL

204
90/ \

BURDEIN
[ErA
S9Ny

amg
IBusIs

uieiog dmis

BIPUBH 194003
3e0idrg @1es8in

BipUBH SipueH

J2%30% 1BN00S
JBUZISH JBuULIsHY
s1endng

US 9,448,827 B1

Sheet 8 of 13

Sep. 20, 2016

U.S. Patent

008

8 'Old

08

uiswoc Bujonuon

L8

0i8 08

BIE(] 908 \ SUIYIBIA
ans 193308 [BNLAA
JBUBISIT 1BUBISIT =ied 1sens)
oog Adon

uBioqg gnis

gie

195005

JOUBISIT 918840 808

gig B|pueH
Bong

JBUBISIT

BIPUBH
1I|N003
IBUBISHT

US 9,448,827 B1

Sheet 9 of 13

Sep. 20, 2016

U.S. Patent

6 'Old

] 1
SUILTBIN [BIMUA O] 98L00s8eY palsdald Jojsus)
ye6 .n“ I W ENLIA O _ ol paledsld I3 1—>

e _ _
¢ed xfm asuodsey siedaid u

_ |
_Almmcoammm 9mgmi|“ v 0es _

[——pai0I59Y WA—— u. 876

976 _
QUILDRIA

[BNLIA DRICISSY

NA D58

A—aBRICIS pUSUSNS WICH NA SI01S8y
|

026 A —panieooy ssuodssy—p
1

816 J,ﬁ u
asuodsay

|
[———=aBei0ig puadsng 0} WA Jejsuel | —————— v 9LE

| _A|§> puadsng v 16
_ _ _

l———uirwiog anig 01 grIS sRUSISIT J9SUE. | —— v ZL6
_

v Ze6

006

016 qMS JBUSIS e18alD)

206

Q06

06

LHBUIO0]
Bunicnuon

suUIyIB

sbrioig pusdsng UI2WIOG ams BrA 150D

US 9,448,827 B1

Sheet 10 of 13

Sep. 20, 2016

U.S. Patent

02oL

8L

0001

amg Jsuags
BAOULIDY

BUILOBYY FENHIA

0} 9su0dsey
CIBAMIO-4

SUIUDBIY
BN SIS0y

0L 'Old

]

UieLIOg qnis

$00L 1

9001

1BjpuBeH
[BUONIpUOD)

J

idpueH

[BUSHIDUOD

J

AL

LONBLLLIGIUY
SUIOEI [BNUIA

aLot UCIIBLLUICLU

MIOMISN

Gris 1susisii

74N)

2001

US 9,448,827 B1

Sheet 11 of 13

Sep. 20, 2016

U.S. Patent

1422

oiLl

0oL

AN

asuadssy

L1 "Old

0L

JBUILE INOBWILL

NOBUL | 91BaID

asuodse

YOl

IBIpUeH
[RUOIPUDD

J/

JajpueH
FELOHPUOD

J/

wnoswi]

UCIB LU
DUILDEN {ENHEA)

LIOREWLIOILY

A%

Gzl

gLt

Bl pue
arg Buusisiy
BACLLIS Y

SURIOBI J2NIA

o} ssuodsey
NOB |
pEEMIO 4

MIDAION

ams Buussi

Uieweq ams

IUILDBIN
[BNUA 240158y

US 9,448,827 B1

Sheet 12 of 13

Sep. 20, 2016

U.S. Patent

¢l "Old

FAval
UIRLWIGE] Buljonuos

BUILDBIN
[BNLIA 18aN5)
80gi

¥OZ1L

0

AYAS JBUBISIT
WEWoQ gnig
J
gLzt PLZl 2071
OL2E N e .
19%00G v =L lelg (23N
J8U81817 ‘alng peseyng
J
gloh

ssuadssy

LA

U.S. Patent Sep. 20, 2016 Sheet 13 of 13 US 9,448,827 B1

1300

1304

Application
Server

1306

Web 1308

US 9,448,827 Bl

1
STUB DOMAIN FOR REQUEST SERVICING

BACKGROUND

Modern computer systems frequently interact with remote
systems and applications, sending requests to these remote
systems and waiting for responses. During the time between
when a request is made to a remote system and a response
is received, such systems may not be able to perform any
other work, and may remain idle while still consuming
resources such as memory, central processing unit and other
such resources. In computer systems involving virtualized
computing environments, where a plurality of guest
machines may share such computer resources, expending
resources on idle machines may potentially cause resource
shortages as those resources may not be available to other
guest virtual machines. Such resource shortages may lead to
resource contention and may lead to system slowdowns,
system delays and/or system outages which may, in turn,
adversely affect overall system performance. In systems
where a host system may support multiple guest virtual
machines, the ability of a system to reclaim resources from
idle machines and redistribute those resources to active
machines may become important to maintaining system
performance.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments in accordance with the present
disclosure will be described with reference to the drawings,
in which:

FIG. 1 illustrates an example environment where a guest
virtual machine may be suspended while waiting for a
response in accordance with at least one embodiment;

FIG. 2 illustrates an example environment where a guest
virtual machine may begin the process of sending out a
request, creating a listener and may be suspended in accor-
dance with at least one embodiment;

FIG. 3 illustrates an example environment where a guest
virtual machine may be restored and may receive a response
after being suspended in accordance with at least one
embodiment;

FIG. 4 illustrates an example environment where one or
more guest virtual machines on one or more host computer
systems in a distributed environment may be suspended in
accordance with at least one embodiment;

FIG. 5 illustrates an example process for suspending guest
virtual machine while they are waiting for a response and
restoring those guest virtual machines when the response is
received may be performed in accordance with at least one
embodiment;

FIG. 6 illustrates an example environment where a guest
virtual machine may create a listener stub in accordance
with at least one embodiment;

FIG. 7 illustrates an example environment where a guest
virtual machine may create a listener socket on a stub
domain by creating a duplicate socket in accordance with at
least one embodiment;

FIG. 8 illustrates an example environment where a guest
virtual machine may create a listener socket on a stub
domain by instructing the stub domain to create a listener
socket in accordance with at least one embodiment;

FIG. 9 illustrates an example process and timeline for
creating a listener stub, suspending a guest virtual machine,
receiving a response, restoring the suspended guest virtual
machine and forwarding the response to the restored guest
virtual machine in accordance with at least one embodiment;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 10 illustrates an example environment where a stub
domain may receive a response to a request in accordance
with at least one embodiment;

FIG. 11 illustrates an example environment where a stub
domain may timeout before receiving a response to a request
in accordance with at least one embodiment;

FIG. 12 illustrates an example environment where a
response is received by a stub domain and forwarded to a
restored guest virtual machine in accordance with at least
one embodiment; and

FIG. 13 illustrates an environment in which various
embodiments can be implemented.

DETAILED DESCRIPTION

In the following description, various embodiments will be
described. For purposes of explanation, specific configura-
tions and details are set forth in order to provide a thorough
understanding of the embodiments. However, it will also be
apparent to one skilled in the art that the embodiments may
be practiced without the specific details. Furthermore, well-
known features may be omitted or simplified in order not to
obscure the embodiment being described.

Techniques described and suggested herein include meth-
ods, systems and processes for managing resources on
computing systems and executable code operating thereon.
In particular, techniques are disclosed for utilizing processor
capabilities to facilitate redistribution of system resources
such as memory, central processing units (CPUs), system
storage, other system hardware and the like, by and for
operational elements of computer systems, including, but
not limited to, hypervisors, operating systems, guest oper-
ating systems and guest applications, while a plurality of
these operational elements are operating on one or more
computer systems. A distributed and/or virtualized computer
system may benefit from efficient management of computer
system resources in order to facilitate better system perfor-
mance. In computer systems where system resources may be
oversubscribed, effectively reclaiming unused or underuti-
lized resources from guest virtual machines, including
resources such as CPU cycles, memory and other such finite
resources, and redistributing those resources to other sys-
tems may serve to keep all such elements functioning
efficiently. Without effective management of resources, the
resources may become scarce and/or unavailable, leading to
system slowdowns, reductions in performance, failure of
running applications and/or failure of the operational ele-
ments. Ineffective management of system resources may
also, in some embodiments, require a system to be config-
ured with additional hardware resources in order to maintain
high levels of performance.

In an illustrative example, a computer system with a
plurality of guest virtual machines may exhibit decreased
system performance when certain resources become scarce.
A system may exhibit decreased performance when shared
system resources including, but not limited to, system
memory, system disk resources, network resource, disk
input-output bandwidth, socket handles, network handles,
file handles or other such operating system limited resources
become scarce. In such shared and/or virtual systems, a
tightly constrained, finite resource, such as system memory,
may become overcommitted in order to facilitate better
overall system performance under the assumption that not
all guest systems may need their full memory allocation at
the same time. When resources become scarce, the resources
may be temporarily reallocated from one system to another
in order to keep one operating at full efficiency. The delete-

US 9,448,827 Bl

3

rious effect that this reallocation may have on the system that
gives up system resources such as memory and CPU cycles
may be greatly reduced if that system is mostly idle and not
using some or all of its resources for some period of time,
provided the resources may be returned before the donating
system needs them.

Techniques disclosed herein include employing resource
management techniques for managing computer system
resources using a resource manager such as a hypervisor on
a computer system implementing a system virtualization
technique whereon a plurality of guest virtual machines
running on one or more host computer systems have been
implemented. In some embodiments, a guest virtual machine
(also referred to as a virtual machine, a VM, a virtual
machine instance, a guest instance, a guest machine, a guest
domain, an application domain or other such terms) or an
application running thereon may issue a request to a second
computer system, service or resource. The request may be
one of the many possible types of requests that may be made
by one computer system to another computer system, ser-
vice or resource such as, but not limited to, a request for
data, a request to perform some calculation, a request to
update some data on the remote system, a request to validate
credentials, a request for website display pages and/or data,
a request to update a shared virtual space or a combination
of these and/or other types of requests. In some embodi-
ments, the second computer system, service or resource may
be running on the same computer system as the guest virtual
machine or application, or it may be running on a different
computer system or it may be running on a combination of
nodes operating on both locally and remotely. The guest
virtual machine or application running on the guest virtual
machine and the second computer system, service or
resource may be connected to each other via a number of
mechanisms including, but not limited to, a network such as
a local network, an internal network, a system backplane, a
public network such as the Internet, a wide-area network, a
wireless network, a mobile network, a distributed computing
system with a plurality of network nodes and/or a combi-
nation of these and/or other network elements.

In some embodiments, the request issued by a guest
virtual machine to a second computer system, service or
resource may require a response. For example, if a purchas-
ing application on a guest virtual machine issues a request to
a credit card processing service to validate a credit card
transaction, the guest virtual machine requires a response
from the credit card processing service before the purchas-
ing application can complete. The response to this request
may be, for example, an acceptance of the purchase, or a
denial of the purchase, or a notification that the request was
received and will be processed later or a number of other
such responses. As may be contemplated, when a guest
virtual machine sends a request to a second computer
system, service or resource that guest virtual machine may
not be able to perform any other actions until a response is
received. In such systems where a response is required
before proceeding, the guest machine may be in a spinning
or busy-wait state until the response returns, and it may be
consuming system resources such as memory, CPU cycles or
other such resources, while it may not be actually accom-
plishing any useful work. In some embodiments, where the
system may be waiting for a relatively long time before the
response returns, the requesting guest virtual machine or
application may be paused and/or suspended during the
request in order to free the underutilized resources provided
that some mechanism may be provided to restore the guest

20

25

35

40

45

50

55

4

virtual machine at least by the time that the response returns
and/or to receive the response when it arrives.

In some embodiments, a guest virtual machine or an
application running thereon may issue a request to a second
computer system, service or resource. The request may be
issued using a standard request-reply protocol such as hyper-
text transfer protocol (HTTP), secure shell (SSH), remote
desktop protocol (RDP), remote procedure call (RPC) or
may be issued using techniques from some higher level
language such as Java, JavaScript, Ruby, C++ and the like or
may be issued with an informal, custom, ad-hoc or other
such mechanism for associating requests and replies. As
may be contemplated, the guest virtual machine or an
application running thereon may determine that it has no
useful work to perform until the response returns from the
second computer system, service or resource. The determi-
nation that there is no useful work to perform may be
performed by the application itself, or by a controller
element on the virtual machine or by a process running on,
or under control of, a controlling domain such as a hyper-
visor or a domain zero on the host computer system or by a
combination of these and/or other system clements.

The guest machine or an application running thereon may
further determine that it is likely that the response may take
a considerable length of time to complete and that the
considerable length of time may be greater than a defined,
derived and/or determined threshold length of time. For
example, in some embodiments, the threshold length of time
may be set by the host system as a static value and any
response time that exceeds that threshold length of time may
make the candidate guest machine a candidate for suspen-
sion. In some embodiments, threshold length of time may be
initially set by the host system, but may also be adjusted by
the host system as the demand for one or more system
resources increases and/or decreases. In some embodiments,
the threshold may be set by the guest machine based on such
factors as past performance of similar response times and in
such embodiments, the guest machine may nominate itself
for suspension by, for example, sending a message, com-
mand, API call or other such communication to a controlling
domain or other such process on the host machine. As may
be contemplated, a computer system may use a combination
of these and/or other such mechanisms for setting and/or
adjusting the threshold. As also may be contemplated, a
computer system may also maintain a plurality of thresholds
and may choose to apply different thresholds to different
users, machines or applications based on a variety of system
factors including, but not limited to, the time of day, system
resource loading, classification of guest machines, classifi-
cation of customers and/or owners of guest machines or a
combination of these and/or other such system factors.

The determination that the response may take a consid-
erable length of time to complete may be performed by the
application itself, or by a controller element on the virtual
machine or by a process running on, or under control of, a
controlling domain such as a hypervisor on the host com-
puter system or by a combination of these and/or other
system elements. The determination that the response may
take a considerable length of time to complete may be based
on a number of factors including, but not limited to, the
nature of the request, the nature of the second computer
system, service or resource, the distance, latency, bandwidth
or other such factors of connectivity between the two
systems, whether the second computer system, service or
resource may forward the request to a third and/or subse-
quent computer systems, services or resources, historical
data about past similar requests, performance heuristics, an

US 9,448,827 Bl

5

explicit configuration value entered by an application devel-
oper and/or a combination of these and/or other such factors.
The determination of what may constitute a considerable
length of time for the response, and thus whether this guest
virtual machine may be a good candidate for suspension and
reclamation of resources may also depend on a number of
factors including, but not limited to, the length of time it may
take to suspend the guest virtual machine, the length of the
time it may take to reclaim the resources, the length of time
it may take to return the reclaimed resources, the length of
time it may take to restore the guest virtual machine,
configuration factors of the guest virtual machine including
the type of machine, the type of customer, the business value
of the machine and other such factors, overall system
policies and/or a combination of these and/or other such
factors.

As may be contemplated, the amount of memory associ-
ated with and the complexity of a guest virtual machine and
of the application or applications running thereon may be a
determining factor in deciding whether a guest virtual
machine may be a good candidate for suspension and
reclamation. For example, a guest virtual machine with only
a single application and a small amount of memory may be
suspended and restored very quickly and thus, it may be
beneficial to suspend the machine even during a compara-
tively short wait for a response and even though suspending
such a machine may only yield a small amount of reclaimed
resources. By contrast, a large and complex guest virtual
machine may not be a good candidate for suspension for
anything except very lengthy waits because the overhead
associated with suspension and restoring such a machine
may counter the benefits of reclaiming more resources.

In the event that it is determined that due to the nature of
the request and/or the nature of the guest virtual machine, a
particular guest virtual machine is a good candidate for
suspension while waiting for a response, the guest virtual
machine or an application running thereon may create a
listener stub that is at least configured to wait for and receive
the response. In some embodiments, the guest virtual
machine on an application running thereon may create a
listener stub by authoring a stub configuration and transfer-
ring that stub configuration to a stub domain. In some
embodiments, a stub domain may be a system, process,
application or other such entity running on the host machine
under the control of controlling domain such as a hypervisor.
A stub domain may be configured to at least receive stub
configurations and to receive and process responses accord-
ing to directions contained in or associated with stub con-
figurations. A stub configuration may contain a handling
plan which may contain data, information and/or instruc-
tions describing a one or more conditional handlers for the
response to the request. In some embodiments, the handling
plan and/or the conditional handlers may include informa-
tion including, but not limited to, one or more network
interfaces of the requesting machine, hostnames for the
guest and/or second systems, port names and/or ids for the
guest and/or second systems, system addresses, network
and/or other protocols, interaction instructions such as appli-
cation contracts, message request and response correlation
identifiers, machine instance identifiers, application identi-
fiers and/or a combination of these and/or other such infor-
mation that may be useful for associating responses to
requests and/or may be useful for processing responses.

In some embodiments, a conditional handler may include
logic that may specify at least how to react to a certain
response. For example, in an embodiment where a request is
sent using a standard request-reply protocol such as HTTP,

10

15

20

25

30

35

40

45

50

55

60

65

6

a set of one or more conditional handlers may include a first
conditional handler to receive and discard an HTTP 100
(Continue) response, may include a second conditional
handler to receive and process an HTTP 200 (OK) response,
may include a third conditional handler to receive and buffer
the results of an HTTP 206 (Partial Content) response and
may include fourth and subsequent conditional handlers to
receive and handle HTTP errors such as 400 (Bad Request),
403 (Forbidden) or 404 (Not Found). In some embodiments,
conditional handlers for common responses such as for the
OK and HTTP error codes may be incorporated into the stub
domain itself and/or they may be included as necessary in
each conditional handler. In another example, such as in the
purchasing system described herein, the conditional han-
dlers may include conditional handlers for responses from
the credit card system that indicate whether the transaction
was approved, denied or whether some error occurred and
what are the appropriate responses. In some embodiments,
configuration options including, but not limited to, maxi-
mum wait times before a timeout, maximum number of
retries or other such options may be included in the stub
configuration along with conditional handlers indicating
what action or actions should be taken as a result of
violations of such configuration options. As may be con-
templated, other types of conditional handlers may be con-
sidered as being within the scope of the present disclosure.

As may be contemplated, when a guest virtual machine or
an application running thereon sends a request to a second
computer system, service or resource, the guest virtual
machine may have created and/or attached to a listener
socket to receive the request as part of the process of making
a request. The guest virtual machine may create a listener
stub by combining the stub configuration with information
about the listener socket such as a socket handle, and
providing the combined information to the stub domain. In
some embodiments, the guest virtual machine may duplicate
the listener socket handle as part of the process for creating
a listener stub, thus creating two listener socket handles. The
guest virtual machine may then transfer the duplicated
listener socket handle together with the stub configuration to
the stub domain. In some embodiments, the guest virtual
machine may retain the original listener socket handle or it
may destroy the original listener socket handle. In some
embodiments, the listener socket handle may be included in
the stub configuration or it may be separate from the stub
configuration. The combined stub configuration and listener
socket handle may be transferred to the stub domain by a
variety of mechanisms including, but not limited to, by
sending a serialized message containing the combined infor-
mation, or placing a message or some other such data
structure in shared system memory and notifying the con-
trolling domain or stub domain, or by placing the message
or some other such data structure in a system queue that the
stub domain checks periodically or by other such methods
and/or mechanisms. In some embodiments, the guest virtual
machine may not duplicate and transfer the listener socket
handle to the stub domain but may instead transfer the
information necessary to allow the stub domain to duplicate
the listener socket handle. The stub domain may then in turn
create the duplicate listener socket handle itself. The guest
virtual machine or an application running thereon may, for
example, specify a port and a protocol for the stub domain
to use to construct and/or attach to a new socket in order to
listen for a reply.

When the stub configuration and socket information have
been transferred to the stub domain, the guest virtual
machine or an application running thereon may be ready for

US 9,448,827 Bl

7

suspension. In some embodiments, the guest virtual machine
may communicate with the hypervisor or controlling domain
that it is ready for suspension. The communication may be
made via a hypervisor trigger event, or an application
programming interface (API) call to the hypervisor or by
some other such mechanism. In some embodiments, a
process running on or under the control of the hypervisor
may monitor transfers to the stub domain and may use the
existence of such transfers at least as an indicator that a
suspension may occur. In some embodiments, a process
running on or under the control of the stub domain may
similarly monitor transfers to the stub domain and may use
the existence of such transfers at least as an indicator that a
suspension may occur. The hypervisor or controlling
domain, upon receiving an indicator that a guest virtual
machine may be suspended, may at least pause the guest
virtual machine, may additionally evict at least a portion of
the guest virtual machine by copying memory pages and/or
other resource state to a suspend storage location and may
additionally reclaim the corresponding physical memory
pages from the paused guest virtual machine in order that
they may be provided to one or more other guest virtual
machines or applications running thereon.

After receiving the listener stub, the stub domain may
receive a response to the request. In some embodiments, and
depending at least partially on the nature of the request
and/or at least partially on the nature of the response, the
stub domain may receive the entirety of the response or a
portion of the response. As described herein, the response
may be data that may be required by the requesting guest
virtual machine or application or it may be a status or error
response or it may be some other type of response. The stub
domain may determine which of the one or more stub
listeners that the response belongs to by, for example,
comparing the response values to values stored in the one or
more stub configurations. The stub domain may also deter-
mine how to process the response according to the condi-
tional handlers of the appropriate stub configuration. In
some embodiments, when the stub domain is not able to
determine which stub listener a response belongs to, the stub
domain may ignore the response, or it may alert the hyper-
visor, or it may alert a process running under the control of
the hypervisor, or it may alert a process running on the host
machine, or it may alert one or more of the other guest
virtual machines or it may do a combination of these and/or
other actions in response to the response. Similarly, if the
stub domain is not able to locate an appropriate conditional
handler for the response, the stub domain may also ignore
the response, or it may alert the hypervisor, or it may alert
a process running under the control of the hypervisor, or it
may alert a process running on the host machine. In some
embodiments, the stub domain, upon receiving an unrecog-
nized or unknown response may have a default conditional
handler that at least restores the suspended guest virtual
machine and forwards the response to the restored guest
virtual machine.

As part of processing the response, the stub domain may
determine that the suspended guest virtual machine may be
restored so that the guest virtual machine may further
process the response. In the event that a partial response is
received by the stub domain, the stub domain may determine
that the suspended guest virtual machine may remain sus-
pended until some or all of the remainder of the response
may be received or it may determine that the guest virtual
machine may be restored to deal with the partial response.
As may be contemplated, conditional handlers can be
devised to evaluate the amount and/or content of the

20

25

40

45

50

55

8

response as well as the type or category of the response and
to process the response accordingly. For example, a condi-
tional handler for a request that requires the delivery of a
stream of video may instruct the stub domain to save and
buffer a portion of the video stream at the stub handler
before restoring the suspended guest virtual machine or it
may instruct the stub domain to restore the guest virtual
machine when the entire video stream has been delivered or
it may restore the guest virtual machine at the first frame and
rely on the buffering capabilities of the guest.

After the stub domain makes the determination that the
suspended guest virtual machine may be restored, the stub
domain may communicate to the hypervisor to begin the
restoration from the suspend storage. In some embodiments,
the stub domain may communicate the request by sending a
message to the hypervisor indicating which machine may be
restored. While the hypervisor is restoring the suspended
guest machine, the stub domain may continue receiving
response data, including, but not limited to, further data for
the current response, other responses and/or response data
for the same suspended virtual machine and/or other
responses and/or response data for other suspended virtual
machines and the stub domain may process these additional
responses and response data by caching the data, forwarding
it, generating additional requests to the hypervisor, ignoring
it, or a combination of these and/or other actions.

In some embodiments, once the hypervisor completes
restoration of the suspended guest virtual machine includ-
ing, but not limited to, reclaiming resources such as memory
and CPU cycles from other guest virtual machines, restart-
ing the guest virtual machine and/or restoring at least a
portion of the applications running on the guest virtual
machine, the hypervisor may signal the stub domain that the
guest virtual machine is restored and ready to receive the
response. As may be contemplated, if the response returns
exceptionally rapidly, the guest virtual machine may not be
fully suspended before it is time to restore it. For example,
a response might generally take tens of seconds under
normal circumstances but an error response that comes in as
aresult of, for example, a badly formed request, might return
much more rapidly. In such systems, the hypervisor may
stop the suspension and return the guest virtual machine to
an operational state without bothering to complete the
suspension in order to avoid the possible overhead of
restoration.

With the guest virtual machine restored, and the response
available, the stub domain may complete the process by
forwarding the response to the guest virtual machine or an
application running thereon. As mentioned previously, in
some embodiments the guest virtual machine may have
retained the original listener socket handle or it may have
destroyed the original listener socket handle after transfer-
ring it to the stub listener or it may have never had a listener
socket handle. In some embodiments where the socket was
destroyed or where the socket never existed, the stub domain
may transfer the response by opening a new socket connec-
tion on the guest domain and forwarding bytes received on
the socket on the stub domain to the socket on the guest
virtual machine. In such embodiments, the stub listener may
remain in place on the stub domain until the response has
been completely received in order to facilitate transferring
the complete response. As may be contemplated, embodi-
ments that may transfer the response data from the stub
domain to the guest virtual machine may be implemented
using a buffer to transfer the response data or may be

US 9,448,827 Bl

9

implemented by directly forwarding data from the receiving
socket on the stub domain to the receiving socket on the
guest virtual machine.

In some embodiments where the guest virtual machine
may have retained the original listener socket handle, the
guest virtual machine may be restored in a state where it is
ready to process the response without creation of a new
socket listener handle. In such embodiments, the guest
virtual machine may have been ready to receive a response
when it was suspended and thus, may be ready to receive the
response when it is restored. In these embodiments, the stub
listener may be removed from the stub domain at any point
after the guest virtual machine begins receiving the response
data. As may be contemplated, in some embodiments the
guest virtual machine may restored in a state that is not the
same as the state that it was in when it was suspended. For
example, some of the resources such as system memory,
input output handles, system sockets, and/or other such
system resources that may have been reclaimed by the host
system when the guest virtual machine was suspended may
not be returned to the guest machine when it is restored, or
may be returned to the guest machine in an altered state. This
change in state may occur at least in part due to a decision
by the host system that, for example, the guest virtual
machine may no longer have a requirement for those
resources, or that the resources may be returned in a more
efficient manner or due to other such resource optimization
determinations.

In some embodiments, the stub domain may instead
facilitate the transfer of the response by using a duplicate of
the listener socket. In some embodiments where the guest
virtual machine may not have retained the original listener
socket handle, the stub domain and/or the hypervisor may
transfer the reply by duplicating the listener socket handle
on the guest virtual machine after it has been restored. The
listener socket handle may be duplicated by sending a
message back to a receiving process or application on the
guest virtual machine, instructing it to create and reattach the
appropriate listener socket handle. In such embodiments, the
listener stub may be removed from the stub domain after the
listener socket handler has been created and is receiving
data. As may be contemplated, in any of the embodiments
mentioned herein where the stub domain begins by reading
the response data, the stub domain may need to rewind some
portion of the received response to the socket stream before
the suspended guest virtual machine begins processing the
response so that the guest virtual machine may process the
entirety of the response. In some embodiments this return
may be accomplished by rewinding the stream, by re-
queuing a portion of the received data, by using look ahead
methods or by a combination of these and/or other methods.
In some embodiments, the transfer of data from the stub
domain may be accomplished by a combination of the
methods mentioned herein. For example, a stub domain may
receive a response, create a duplicate socket handler on the
restored guest virtual machine, begin by transferring the
already received response data to that socket handler and
then, once the guest virtual machine has caught up, transfer
control of the reception of the data to the duplicate socket
handler on the restored guest. In some embodiments the
response may be sent to the guest virtual machine by
receiving the response at the stub domain, processing it,
writing the response directly into the image of the suspended
guest virtual machine and only then restoring the guest
virtual machine. In such embodiments, the guest virtual
machine may be restored in a state such that it appears to the
guest virtual machine that it has already received the

25

30

40

45

10

response and processed it. As may be contemplated, other
types and combinations of methods for delivering the
response to the restored guest virtual machine may be
considered as being within the scope of the present disclo-
sure.

There are many ways that the stub domain, the hypervisor,
the guest virtual machine, an application running on the
guest virtual machine and/or a combination of these and/or
other computer system entities may receive a response,
restore a suspended virtual machine, and transmit the
response to the restored virtual machine. For example, as
mentioned above, a stub domain may institute a general
conditional handler for a time limit or timeout on receiving
a response. Such a timeout may be handled by having the
stub domain initiate a restore on the guest virtual machine
and then having the stub domain generate an artificial
timeout response to be sent to the restored guest virtual
machine. The receiving guest domain or application running
thereon may process the artificial timeout response as if it
were a real timeout response by, for example, converting the
response to an exception and using that exception to initiate
appropriate timeout behavior. Alternately, and in some
embodiments, under user control, the controlling domain
may be configured to respond to a timeout by incrementing
a counter and resending the request on behalf of the sus-
pended guest virtual machine and only initiating a timeout
event after a possibly configurable number of tries have been
attempted. As may be contemplated, other types of restora-
tions, responses, configurations and such may be considered
as being within the scope of the present disclosure.

FIG. 1 illustrates an example environment 100 for sus-
pending a guest virtual machine while waiting for a response
on systems such as distributed and/or virtualized computer
systems, as well as the associated code running thereon in
accordance with at least one embodiment. A guest virtual
machine 102, which may be one of a plurality of guest
virtual machines on a computer system, sends a request 106
to a remote computer system, service or resource that may
be connected to the guest virtual machine via a network 104.
The request may be a request for data, or a request for status,
or a request to complete a computation or may be a com-
bination of one more of these and/or other types of requests.
In some embodiments, when it may be determined that the
guest virtual machine has no other work to perform while
waiting for the response, it may be determined that the guest
virtual machine should 108 enter a wait for a response state.
It may be determined that the guest virtual machine may
enter a wait for a response state based on a variety of factors,
including, but not limited to, whether the guest virtual
machine may have no other work to perform until the
response returns, or whether the guest virtual machine may
have at least no important and/or critical work to perform
until the response returns, or whether other guest virtual
machines have more important work to perform until the
response returns, or whether the system is in a low-resource
state and may need to force the guest virtual machine into a
wait for response state, or because of the nature of the guest
virtual machine, or because of the nature of the applications
running on the guest virtual machine, or because of the
business value of the guest virtual machine and/or the
applications running thereon or because of a combination of
these and/or other factors.

If the guest virtual machine 108 enters a wait for response
state and becomes 110 a waiting virtual machine, it may be
determined whether the guest virtual machine should be
suspended and the resources reclaimed. In some embodi-
ments, whether the guest may be suspended and the

US 9,448,827 Bl

11

resources reclaimed may be decided based on a variety of
factors, including, but not limited to, the amount of
resources available for reclaiming from the guest virtual
machine, the current scarcity of the resources, the amount of
time it may take to suspend and restore the guest virtual
machine, the presence and/or amount of any overhead
associated with suspending and restoring the guest virtual
machine, the nature of the guest virtual machine, the nature
of the applications running on the guest virtual machine, the
business value of the guest virtual machine and/or the
applications running thereon or a combination of these
and/or other factors. Both the decision to place the guest
virtual machine and the decision to suspend the waiting
guest virtual machine may be made by processes running on
the guest virtual machine, or by processes running on a
controlling domain such as a hypervisor, or by processes
running on the host system, or by a process or processes
running on another system, resource, or entity or by a
combination of processes running on these and/or other
computer systems, resources, or entities.

In the event that it is determined that the waiting virtual
machine 110 should be suspended, the waiting guest virtual
machine may first 112 create a response listener 114. In
some embodiments, the response listener may be created as
a set of one or more resource objects which may describe
and/or implement actions and resources that may be used by
the computer system to receive a response or reply to the
previously sent request. The objects in the set of one or more
resource objects may include, but not be limited to, such
objects as network identifying information for the requesting
guest virtual machine, network identifying information for
one or more receiving computer systems, resources or
services, one or more conditional handlers which may
describe one or more actions to take depending on the
response received, one or more timeout values, one or more
actions to take as a response to timeouts, errors and/or other
such system events and/or other such objects. In some
embodiments, the response listener may be created by the
guest virtual machine as a listening stub. A stub is an
implemented interface with a set of functionality and/or
actions and that is designed to wait for and respond to one
or more external events such as one or more messages, one
or more conditions, some data and/or a combination of these
and/or other such events. As may be contemplated, a listener
stub is a stub that is designed to listen for or wait for a
response. The listener stub may then be transferred to one or
more other processes on the host system that are configured
to at least receive and implement the operations associated
with listener stub objects such as, for example, a stub
domain running under the control of a controlling domain
such as a hypervisor. In some embodiments, the response
listener may be created by the guest virtual machine as the
description of a stub, and the described stub may be instan-
tiated by another process or processes running on the host
system. For example, the description of the listener stub may
be instantiated by the stub domain where that stub domain
is configured to at least receive stub descriptions, instantiate
the described stub and implement the operations associated
with listener stub objects.

After the response listener has been created, the response
listener may 116 begin waiting for a response while the
waiting virtual machine 110 may be 118 suspended. The
waiting virtual machine may be suspended by sending a
message to a controlling domain such as a hypervisor that
the waiting virtual machine is ready to be suspended. The
hypervisor or a process or processes running under the
control of the hypervisor may manage the suspension of the

20

35

40

45

55

12

waiting guest virtual machine by at least pausing the waiting
virtual machine and writing its memory and other such
resources to a suspend storage location. At some point later,
the response listener 122 may receive a response or reply
120 from a remote computer system, service or resource that
may be connected to the guest virtual machine via a network
104. The response may be one of one or more acceptable
responses such as data requested, or the result of computa-
tion, or the beginning of a stream of data, or access to an
external resource or any of a number of other responses. The
response may also be a status message indicating that the
response is still pending or one of a variety of errors and/or
failures indicating the request has failed or may fail. As part
of the one or more actions that may be associated with the
response, the response listener may 124 notify the sus-
pended virtual machine 126 that the response has been
received which may 128 restore the 130 guest virtual
machine.

FIG. 2 illustrates an example environment 200 where a
guest virtual machine may be suspended while waiting for a
response as described at least in connection with FIG. 1 and
in accordance with at least one embodiment. A guest
machine 202, running on a host machine and under the
control of a hypervisor 204 may make a request 206 to a
second computer system resource or service as described at
least in connection with FIG. 1 and in accordance with at
least one embodiment. One or more processes running on
the guest machine and/or on some other computer system
entity may determine that receiving a response to the request
may take a substantial length of time and that the guest
machine may be suspended from operations while waiting
for the response to the request. In some embodiments, the
guest machine may determine that the request may take a
substantial length of time at least partially based on previous
experience with other such requests, or at least partially
based on past, current or predicted network and/or commu-
nications times, latency and/or available bandwidth, or at
least partially based on other external system conditions or
at least partially based on a combination of one or more of
these and/or other such factors. In some embodiments, the
guest machine may query a separate process running on the
host machine or on some other computer system entity to
determine the length of time that the response to the request
may take. In some embodiments, the host machine or one or
more processes running on the host machine may evaluate
the request made by the guest machine and may make the
determination of how long the response to the request may
take. In some embodiments, the determination to suspend
the guest machine may be made by the guest machine, or by
a separate process running on the host machine or some
other computer system entity, or by a controlling domain
such as a hypervisor on the host machine or by a combina-
tion of these and/or other such computer system entities. The
determination to suspend the guest machine may be at least
partially based on one or more factors, including, but not
limited to, whether the guest virtual machine may have other
work it could perform, how long it may take to suspend and
restore the guest machine, a predicted or measured amount
of time it may take to receive a response to the request,
current and/or predicted system load, current and/or pre-
dicted system resource needs, system policies, one or more
valuations of the importance of the guest machine, the nature
of the customer or a combination of these and/or other such
factors.

If it is determined that the guest virtual machine may be
suspended, in some embodiments the guest virtual machine
may 208 create a listener stub and/or cause a listener stub to

US 9,448,827 Bl

13

be created as described herein and at least in connection with
FIG. 1 and in accordance with at least one embodiment. The
created listener stub 212 may be instantiated in a stub
domain 210 that is configured to at least allow listener stubs
to receive responses to requests and to process those
responses. In some domains, a stub domain may be one or
more processes operating on the host machine and, as may
be contemplated, may be operating under the control of a
controlling domain such as a hypervisor, or may be operat-
ing under the control of the host machine operating system
or may be operating under the control of a combination of
these and/or other such computer system entities.

Once the listening stub is available to process any
responses that may come in, the guest virtual machine may
be 214 suspended. In some embodiments, the guest virtual
machine may inform a controlling domain such as a hyper-
visor that the machine is ready for suspension and may have
some or all of its resources reclaimed for a length of time.
In some embodiments the hypervisor may write the memory
and/or other resource state of the guest virtual machine to a
suspended virtual machine storage area 216 located in a
suspend storage 218 under the control of a controlling
domain such as a hypervisor as described herein and in
accordance with at least one embodiment.

FIG. 3 illustrates an example environment 300 where a
guest virtual machine may be restored after receiving a
response as described at least in connection with FIG. 1 and
in accordance with at least one embodiment. A listener stub
304, instantiated in a stub domain 302 may receive a
response 306 to a previous request. The listener stub 304 is
equivalent to the listener stub 212 of FIG. 2. The stub
domain is equivalent to the stub domain 210 of FIG. 2. In
some embodiments, after the stub domain or one or more
processes associated with the stub domain determine that the
response is valid and that, as a result of the response, the
suspended guest virtual machine may be restored, then the
stub domain may alert a controlling domain such as a
hypervisor 310 so that it may 308 restore the suspended
virtual machine. The controlling domain or hypervisor, upon
receiving an indication that the suspended guest virtual
machine may be restored, may begin 312 restoring the
suspended guest virtual machine by restoring memory and/
or other resource state from 316 the suspended virtual
machine stored in 314 the suspend storage. Once 318 the
restore operation is complete the stub domain may then 320
prepare the response 324 so that the listener stub 322 may
326 transmit the response to 328 the restored guest virtual
machine. The stub domain may prepare the response by
receiving the response and copying it to the guest virtual
machine, or by buffering and port forwarding the response
to the guest virtual machine, or by duplicating receiving
network transport objects between the stub domain and the
guest virtual machine or by a combination of the these
and/or other such methods. As may be contemplated, the
stub domain, the guest virtual machine, the suspend storage
and the controlling domain may use a variety of one or more
processes or system resources to prepare the response and/or
to transmit it to the guest virtual machine and other methods
of preparing and/or transmitting the response may be con-
sidered as within the scope of this disclosure.

As mentioned previously at least in connection with FIG.
1, a computer system may provide hosting and/or resources
for one or more virtual machines. FIG. 4 illustrates a
distributed and/or virtual computing environment 400 for
suspending one or more of a plurality of guest virtual
machines while waiting for a response and restoring those
guest virtual machines after receiving a response as

10

15

20

25

30

35

40

45

50

55

60

65

14

described at least in connection with FIG. 1 and in accor-
dance with at least one embodiment. One or more guest
virtual machines 402 may be operating on one or more
controlling domains 404 that may in turn be operating on
one or more host computer systems 410. Each of the one or
more host computer systems may in turn be operating within
a distributed and/or datacenter computing environment 412
such as a local and/or regional data center with a plurality of
hosts and a plurality of guest computing systems. As may be
contemplated, each host computing system may have, at any
particular time, one or more suspended virtual machines 416
that may be waiting for responses to requests and that may,
in some embodiments, have their pre-suspension memory
and/or resource state stored in 414 a suspend storage as
described at least in connection with FIG. 1 and in accor-
dance with at least one embodiment. For each suspended
virtual machine, there may be one or more listening stubs
408 instantiated within a stub domain 406 that may be at
least configured to instantiate listening stubs and provide
functionality to receive and process replies or responses to
requests sent out by the virtual machines as described at least
in connection with FIG. 1 and in accordance with at least one
embodiment. As may be contemplated, the host computer
systems illustrated in environment 400 may be running on a
distributed and/or virtual computer system such as may be
found in a data center and these systems may be made
available to customers and other types of users for various
tasks. In such examples, the computer system, service or
resource that receives the request and prepares the poten-
tially delayed response may be located on another guest
machine on the same host, or on another guest machine on
a different host in the same computing environment, or on
another machine in a different location such as a remote data
center, customer site, server or other such locations.

FIG. 5 illustrates an example process 500 for sending a
request, suspending a guest virtual machine, receiving a
response and restoring the guest virtual machine as
described at least in connection with FIG. 1 and in accor-
dance with at least one embodiment. In some embodiments,
a guest virtual machine such as the guest virtual machine
202 as described at least in connection with FIG. 2 may
perform at least a portion of process 500. In some embodi-
ments, a controlling domain such as, for example, the
hypervisor 204 as described at least in connection with FIG.
2 may perform at least a portion of process 500. In some
embodiments, a response listener such as the stub domain
208 as described at least in connection with FIG. 2 may
perform at least a portion of process 500. The guest virtual
machine may be one of a set of guest virtual machines as
described at least in connection with FIG. 4. The controlling
domain may be one of a set of controlling domains as
described at least in connection with FIG. 4. The response
listener may be one of a set of response listeners as described
at least in connection with FIG. 4. One or more of the
computer system entities illustrated in FIGS. 1-4 and/or any
other such computer systems, resources or services may
perform at least a portion of the process illustrated in FIG.
5.

When 502 a guest computer system sends a request to a
remote system that requires a response as described at least
in connection with FIG. 1 and in accordance with at least one
embodiment, the guest computer system may 504 determine
whether there is any other work that should be done. A guest
computer system may determine whether there is any other
work that should be done instead of and/or prior to suspen-
sion based on a number of factors associated with the guest
computer system and also with a number of factors associ-

US 9,448,827 Bl

15

ated with a host system or with other guest computer
systems that may be running on that host system, including,
but not limited to, the nature and/or criticality of the work
remaining on the guest computer system, the presence and
degree of any resource shortages on the host machine, the
amount and/or type of the resources associated with the
guest computer system, the nature of the guest computer
system, the owner and/or customer of the guest computer
system or a combination of these and/or other such factors.
For example, a guest computer system may determine that,
while it has work that it could do, it may be better to delay
performance of that work both because that work is not very
critical and because the host system has a high level of need
for the resources associated with that guest computer sys-
tem. In another example, the host system that contains the
guest computer system in question or another guest running
on the host system may have a strong need for the resources,
but the work under consideration is critical for the guest
computer system. As may be contemplated, these examples
are merely illustrative and other such methods and factors
for determining whether to perform other work before
suspension may be considered as within the scope of the
present disclosure.

In the event 504 that the guest computing system deter-
mines that there is other work that should be done, then 506
the guest computer system may perform that other work.
After that other work is performed, the guest computer
system may once again determine whether any of the work
in its list of items is more important than suspending the
guest and releasing the resources. The guest computing
system may make this determination based on the previous
set of factors and/or on a new set of factors. In the event 504
that it is determined that there is no more work that should
be done, the guest computer system may next determine 508
whether the response arrival time is far enough in the future
to justify suspension of the guest machine. As mentioned
previously at least in connection with FIG. 1 and in accor-
dance with at least one embodiment, the determination of
whether the response arrival time is far enough in the future
to justify suspension of the guest machine may depend on a
variety of measurements and factors including, but not
limited to, a predicted, estimated, measured or known length
of time for the response, the amount of time that it may take
to suspend and restore the guest virtual machine, the degree
of resource need on the host system, the amount of resources
associated with the guest virtual machine or a combination
of these and/or other such factors and measurements. As
may be contemplated, if in step 504 the guest computer
system spent at least a portion of the expected response time
doing other work, then the amount of time spent may also be
a factor in determining whether or not to suspend the guest
virtual machine.

If the guest computer system determines 508 that the
response arrival time is far enough in the future to justify
suspension, then the guest computer system may 514 create
a listener stub 514 as described at least in connection with
FIG. 1 and in accordance with at least one embodiment.
Once the listener stub is created, the guest computer system
may 516 request suspension of itself by contacting a con-
trolling domain on the host machine such as a hypervisor or
domain zero and the controlling domain may then suspend
the guest computer system as described at least in connec-
tion with FIG. 1 and in accordance with at least one
embodiment. At some point after suspending the guest
computer system, the listener stub may 522 receive a
response to the request and may, in order to complete the
process of receiving that request as described at least in

10

15

20

25

30

35

40

45

50

55

60

65

16

connection with FIG. 1 and in accordance with at least one
embodiment, 524 restore the guest computer system so that
it may 520 process the response. At some point after
suspending the guest computer system, the listener stub may
526 experience a response timeout if, for example, the
response or reply does not arrive within a set time as
determined by the guest computer system, or by the host
system, or by the stub domain, or by the controlling domain
on the host system or by a combination of these and/or other
such computer system entities. In the event that there is a
response timeout, the stub domain may 528 restore the guest
computer system and may 530 alert the restored guest virtual
machine that no response was received before the response
timeout. As may be contemplated, the operations illustrated
by steps 522 and 526 in process 500 may be performed
asynchronously and/or simultaneously under the control of
such systems as event handlers, signal processors, polling,
or other such systems and these and/or other such methods
of determining whether a response has been received,
whether a timeout has occurred or whether other such
similar events or conditions have occurred may be consid-
ered as within the scope of the present disclosure.

In some embodiments, if the guest computer system
determines 508 that the response arrival time is not far
enough in the future to justify suspension, then the guest
machine may elect to avoid suspension and 510 idle while
waiting for the response to return. As illustrated herein, a
system that remains idle and that is not suspended while
waiting for a response may, in some embodiments, experi-
encing a response timeout 518 which may engender 532 the
guest computer system processing of the response timeout,
which may include such actions as issuing an error, resend-
ing the request, alerting a user, logging the timeout in a
system and/or application log or a combination of these
and/or other such actions. At some point after beginning 510
to idle while waiting for the response, the guest computer
system may 512 receive a response and 520 process the
response. As may be contemplated, the operations illustrated
by steps 510, 512 and 518 in process 500 may be performed
asynchronously and/or simultaneously under the control of
such systems as event handlers, signal processors, polling,
or other such systems and these and/or other such methods
of determining whether a response has been received,
whether a timeout has occurred or whether other such
similar events or conditions have occurred may be consid-
ered as within the scope of the present disclosure.

FIG. 6 illustrates an example environment 600 where a
guest virtual machine may create a listener stub as described
at least in connection with FIGS. 1-3 and in accordance with
at least one embodiment. A guest virtual machine 602 may
604 create a listener stub in order to facilitate suspension of
the guest virtual machine while it is waiting for a response
or reply to a request as described at least in connection with
FIGS. 1-3 and in accordance with at least one embodiment.
The listener stub 606 may contain a variety of information
that may be required to receive and/or process the response
or responses that may come in. In some embodiments, the
listener stub may contain 608 network information that at
least describes how and where the stub listener may listen
for the response or reply to the request that was sent out. The
network may include such information as a network inter-
face description or identifier, a network port description or
identifier, a network socket description or identifier, a host
identifier for the guest virtual machine, a set of information
about the destination machine that may be sending the
response or a combination of these and/or other such net-
work information objects. As may be contemplated, the

US 9,448,827 Bl

17

content of the network information may depend on a variety
of factors and may contain a variety of different objects
depending on, for example, such factors as differences in
network protocols, differences in guest virtual machine
configurations, differences in host system configurations,
differences in responding system, resource or entity con-
figurations, differences in the nature and/or type of the
request, differences in the nature and/or types of the
response or responses or a combination of these and/or other
such factors.

A listener stub may, in some embodiments, contain 610
information about the guest virtual machine including, but
not limited to, identifiers of the machine, its suspension
state, the controlling domain, hypervisor or domain zero that
supervises its operation and other such information. A
listener stub may also contain one or more conditional
handlers that describe how to process certain responses. For
example, a listener stub may contain 612 a first conditional
handler which may be executed by a process or processes
and which may be at least configured to restore the sus-
pended guest virtual machine before performing a series of
one or more other actions. A listener stub may also contain,
for example, 614 a second conditional handler which may be
executed by a process or processes and which may be at least
configured to perform one or more actions before restoring
the guest virtual machine and performing a series of one or
more other actions. As may be contemplated, the instruc-
tions in the conditional handlers may be scripted, or may
contain sections of executable code or modules, or may
include combinations of other such executable or interpre-
table processes or procedures and as also may be contem-
plated, the instructions may be executed and/or processed by
a process or processes under the control of the listener stub
or may be executed and/or processed by a process or
processes under the control of some other computer system
entity.

FIG. 7 illustrates an example environment 700 where a
guest virtual machine may create a listener socket by
instructing a stub domain to duplicate an existing listener
socket. In some embodiments, a guest virtual machine 702,
running on a controlling domain 704 such as a hypervisor or
domain zero may have, as part of sending out a request that
requires a response or reply, created and/or designated a
listener socket handle 708 that the response or reply may be
sent to. If the system makes the determination that the
expected response is far enough in the future to justify
creating a listener stub and suspending the guest virtual
machine as described herein at least in connection with FIG.
5 and in accordance with at least one embodiment, then as
part of creating the listener stub 712 on the stub domain 710,
the guest virtual machine may 706 request or instruct a
process or processes on the stub domain, or under the control
of the stub domain, or under the control of the controlling
domain, or under the control of another such entity to create
a duplicate socket handle. The duplicate socket handle 714
may be at least as similar to the listener socket handle 708
so that the duplicate socket handle may receive the response
on behalf of the listener socket handle when the response
arrives at the stub domain. As may be contemplated, the
duplication of the listener socket handle as described in FIG.
7 is merely an illustrative example and other methods and
mechanisms of duplicating a listener socket handle at the
stub domain may be considered as within the scope of the
present disclosure. For example, the listener socket handle
may be included as part of the network information 608 from
FIG. 6 or it may be sent separately either before or after the
listener stub is created.

10

15

20

25

30

35

40

45

50

55

60

65

18

FIG. 8 illustrates an example environment 800 where a
guest virtual machine may instruct a stub domain to create
a listener socket by sending a set of instructions and/or data
that enable the stub domain to create an appropriate socket
handle. In some embodiments, a guest virtual machine 802,
running on a controlling domain 804 such as a hypervisor or
domain zero may have, as part of sending out a request that
requires a response or reply, created and/or designated a
listener socket handle 808 that the response or reply may be
sent to. If the system makes the determination that the
expected response is far enough in the future to justify
creating a listener stub and suspending the guest virtual
machine as described herein at least in connection with FIG.
5 and in accordance with at least one embodiment, then as
part of creating the listener stub 814 on the stub domain 812,
the guest virtual machine may 806 create a copy of the
listener socket data 810 that at least describes the listener
socket handle 808. The listener socket data may then be
transferred to the stub domain 812 and may, in some
embodiments, be associated with the appropriate listener
stub 814. A process or processes on the stub domain, or
under the control of the stub domain, or under the control of
the controlling domain, or under the control of another such
entity may then 818 create a listener socket handle 816
which may be at least as similar to the listener socket handle
808 so that the duplicate socket handle may receive the
response on behalf of the listener socket handle when the
response arrives at the stub domain. As may be contem-
plated, the creation of the listener socket handle via a
descriptive message as described in FIG. 8 is merely an
illustrative example and other methods of creating an appro-
priate listener socket handle at the stub domain may be
considered as within the scope of the present disclosure. For
example, the description of the listener socket handle may
include such mechanisms as serializing the socket handle to
a message and sending the serialized handle to the listener
stub, or may include instructions to simply allocate a listener
handler from a set of listener handlers that may mimic an
appropriate handle, or it may include instructions to listen on
a certain queue or it may include combinations of these
and/or other such instructions to create the listener socket
handle.

FIG. 9 illustrates an example process and timeline 900 for
creating a listener stub, suspending a guest virtual machine,
receiving a response or reply to a previous request, restoring
the guest virtual machine, and forwarding the response to the
restored guest virtual machine as described at least in
connection with FIG. 1 and in accordance with at least one
embodiment. In some embodiments, a guest virtual machine
such as the guest virtual machine 202 as described at least
in connection with FIG. 2 may perform at least a portion of
process 900. In some embodiments, a controlling domain
such as, for example, the hypervisor 204 as described at least
in connection with FIG. 2 may perform at least a portion of
process 900. In some embodiments, a response listener such
as the stub domain 208 as described at least in connection
with FIG. 2 may perform at least a portion of process 900.
In some embodiment, a suspend storage such as the suspend
storage 218 as described at least in connection with FIG. 2
may perform at least a portion of process 900. The guest
virtual machine may be one of a set of guest virtual
machines as described at least in connection with FIG. 4.
The controlling domain may be one of a set of controlling
domains as described at least in connection with FIG. 4. The
response listener may be one of a set of response listeners as
described at least in connection with FIG. 4. The suspend
storage may be one of a set of suspend storages as described

US 9,448,827 Bl

19

at least in connection with FIG. 4. One or more of the
computer system entities illustrated in FIGS. 1-4 and/or any
other such computer systems, resources or services may
perform process 900 illustrated in FIG. 9.

As a result of sending out a request to a computer system,
resource or entity that may take a length of time, a guest
virtual machine 902 may 910 create a listener stub and 912
transfer the listener stub to a stub domain 906 as described
at least in connection with FIG. 2 and in accordance with at
least one embodiment. The guest virtual machine may then
notify the controlling domain 904 that it may 914 suspend
the guest virtual machine. If the controlling domain deter-
mines that the guest virtual machine is a good candidate for
suspension, the controlling domain may suspend the opera-
tions of the guest virtual machine and may 916 transfer the
memory and/or other such state information of the sus-
pended guest virtual machine to suspend storage 908 as
described at least in connection with FIG. 2 and in accor-
dance with at least one embodiment. At some point in the
future, the stub domain may receive 918 a response or reply
to the request as described at least in connection with FIGS.
3 and 5 and may, in some embodiments, do some processing
of the response before notifying the controlling domain that
920 a response was received. The controlling domain may
then 922 request a restoration of the appropriate suspended
guest virtual machine from the suspend store and the sus-
pend storage and/or the controlling domain may then 924
begin restoring the suspended guest virtual machine. The
restored guest virtual machine 926 may then 928 notify the
controlling domain that the guest virtual machine has been
restored and the controlling domain may then 930 notify the
stub domain to prepare the response. In some embodiments,
the restored guest virtual machine combine steps 928 and
930 and may notify the stub domain directly to prepare the
response. The stub domain may then prepare the response
932 and may 934 transfer the prepared response to the
restored guest virtual machine.

FIG. 10 illustrates an example environment 1000 where a
stub domain may receive a response or reply to a request as
described at least in connection with FIGS. 3 and 5 and in
accordance with at least one embodiment. A stub domain
1004 with a listener stub 1006 may receive a response 1002
from a computer system, service or resource as described at
least in connection with FIG. 3 and in accordance with at
least one embodiment. The listener stub may contain net-
work information 1010, virtual machine information 1012
and one or more conditional handlers 1014 as described at
least in connection with FIG. 6. As part of receiving the
response, one or more processes associated with the stub
domain may determine which of the conditional handlers is
appropriate based on the response received. For example,
one of the conditional handlers may be configured to accept
the expected response, restore the virtual machine 1016 and
forward the response to the restored virtual machine 1018.
A different conditional handler may be configured to, for
example, receive an error response and take some actions in
response to that, or to receive an “OK” type response and
take no actions in response to that. In some embodiments, a
stub domain may perform a cleanup operation after the
response is forwarded by at least taking one or more actions
such as 1020, removing the listener stub. In some embodi-
ments, where the same request may come in multiple times,
the stub domain may elect to instead save and/or hibernate
the listener stub until the next such request occurs. As may
be contemplated, there are a number of other actions that the
stub domain may take before, during or after receiving a
response, restoring the guest virtual machine and forwarding

10

15

20

25

30

35

40

45

50

55

60

65

20

the response and these other actions may be considered as
within the scope of the present disclosure.

FIG. 11 illustrates an example environment 1100 where a
stub domain may timeout before receiving a response or
reply to a request as described at least in connection with
FIG. 5 and in accordance with at least one embodiment. A
stub domain 1102 with a listener stub 1104 may be waiting
to receive a response from a computer system, service or
resource as described at least in connection with FIG. 3 and
in accordance with at least one embodiment. The listener
stub may contain network information 1108, virtual machine
information 1110 and one or more conditional handlers 1112
as described at least in connection with FIG. 6. The listener
stub may also contain one or more timeout timers 1106
which may at least partially determine how long the stub
domain may wait for a response or reply from a computer
system, service or resource. In the event that a timeout timer
expires as described at least in connection with FIG. 5, the
stub domain may, in some embodiments, 1114 create an
artificial response that mimics a timeout event and then may
1116 forward this timeout event response to the listening
stub. As may be contemplated, the creation of an artificial
response that mimics a timeout event may take advantage of
built in timeout functionality or mechanisms in the listening
stub, the stub domain, the host machine, the guest machine,
the controlling domain or a combination of one or more of
these and/or other such computer system entities. In some
embodiments, the stub domain may avoid creating the
artificial timeout response and may instead just proceed with
cleanup as if such a timeout even had occurred. As part of
receiving the timeout event or as part of determining to
proceed as if such an event had occurred, one or more
processes associated with the stub domain may determine if
one of the conditional handlers is configured to respond to
the timeout event and if so, may begin processing of that
conditional handler. In some embodiments, the stub domain
may also have a preconfigured and/or built in conditional
handler to respond to a timeout event. Under control of the
appropriate conditional hander, the stub domain may 1118
restore the suspended guest virtual machine and may 1120
forward the timeout to the restored guest virtual machine
which may then elect to take one or more remedial actions.
In some embodiments, a stub domain may clean up the after
the response is forwarded by taking one or more actions such
as 1122, removing the listener stub as described herein.

FIG. 12 illustrates an example environment 1200 where a
response is received by a stub domain and is forwarded to a
guest virtual machine as described at least in connection
with FIG. 3 and in accordance with at least one embodiment.
A stub domain 1212 running on a controlling domain 1202
such as a hypervisor or domain zero may receive a response
1218 on a listener socket 1216 configured to receive the
response, as described at least in connection with FIGS. 7
and 8 and in accordance with at least one embodiment. The
stub domain may 1214 buffer the response until the 1204
guest virtual machine is restored and then may begin 1210
sending the buffered response 1208 to the restored listener
socket 1206 on the restored guest virtual machine 1204. As
may be contemplated, the a process or processes running on
the stub domain, or on the controlling domain, or on the host
system, or on the restored guest virtual machine or on a
combination of these and/or other such computer system
entities may manage the buffering and forwarding of the
response. For example, in some embodiments, the stub
domain may have the original listener socket and the guest
virtual machine may be restored with an altered listener
socket that the controlling process or processes knows to

US 9,448,827 Bl

21

forward to. In some embodiments, the stub domain may
have an altered listener socket but the response may be
intercepted by the controlling domain or the stub domain for
forwarding. In some embodiments, the listener socket 1216
on the stub domain and the listener socket 1206 on the
restored guest virtual machine may be duplicates and the
response may only be partially buffered by the stub domain
before the guest virtual machine begins to receive the
response itself. As may be contemplated, these methods of
receiving and forwarding the response or reply are illustra-
tive examples and other methods of receiving and forward-
ing the response from the stub domain to the guest virtual
machine may be considered as within the scope of the
present disclosure.

FIG. 13 illustrates aspects of an example environment
1300 for implementing aspects in accordance with various
embodiments. As will be appreciated, although a web-based
environment is used for purposes of explanation, different
environments may be used, as appropriate, to implement
various embodiments. The environment includes an elec-
tronic client device 1302, which can include any appropriate
device operable to send and receive requests, messages or
information over an appropriate network 1304 and convey
information back to a user of the device. Examples of such
client devices include personal computers, cell phones,
handheld messaging devices, laptop computers, tablet com-
puters, set-top boxes, personal data assistants, embedded
computer systems, electronic book readers and the like. The
network can include any appropriate network, including an
intranet, the Internet, a cellular network, a local area network
or any other such network or combination thereof. Compo-
nents used for such a system can depend at least in part upon
the type of network and/or environment selected. Protocols
and components for communicating via such a network are
well known and will not be discussed herein in detail.
Communication over the network can be enabled by wired
or wireless connections and combinations thereof. In this
example, the network includes the Internet, as the environ-
ment includes a web server 1306 for receiving requests and
serving content in response thereto, although for other
networks an alternative device serving a similar purpose
could be used as would be apparent to one of ordinary skill
in the art.

The illustrative environment includes at least one appli-
cation server 1308 and a data store 1310. It should be
understood that there can be several application servers,
layers or other elements, processes or components, which
may be chained or otherwise configured, which can interact
to perform tasks such as obtaining data from an appropriate
data store. Servers, as used herein, may be implemented in
various ways, such as hardware devices or virtual computer
systems. In some contexts, servers may refer to a program-
ming module being executed on a computer system. As used
herein the term “data store” refers to any device or combi-
nation of devices capable of storing, accessing and retrieving
data, which may include any combination and number of
data servers, databases, data storage devices and data storage
media, in any standard, distributed or clustered environment.
The application server can include any appropriate hardware
and software for integrating with the data store as needed to
execute aspects of one or more applications for the client
device, handling some (even a majority) of the data access
and business logic for an application. The application server
may provide access control services in cooperation with the
data store and is able to generate content such as text,
graphics, audio and/or video to be transferred to the user,
which may be served to the user by the web server in the

30

40

45

22

form of HyperText Markup Language (“HTML”), Exten-
sible Markup Language (“XML”) or another appropriate
structured language in this example. The handling of all
requests and responses, as well as the delivery of content
between the client device 1302 and the application server
1308, can be handled by the web server. It should be
understood that the web and application servers are not
required and are merely example components, as structured
code discussed herein can be executed on any appropriate
device or host machine as discussed elsewhere herein.
Further, operations described herein as being performed by
a single device may, unless otherwise clear from context, be
performed collectively by multiple devices, which may form
a distributed system.

The data store 1310 can include several separate data
tables, databases or other data storage mechanisms and
media for storing data relating to a particular aspect of the
present disclosure. For example, the data store illustrated
may include mechanisms for storing production data 1312
and user information 1316, which can be used to serve
content for the production side. The data store also is shown
to include a mechanism for storing log data 1314, which can
be used for reporting, analysis or other such purposes. It
should be understood that there can be many other aspects
that may need to be stored in the data store, such as page
image information and access rights information, which can
be stored in any of the above listed mechanisms as appro-
priate or in additional mechanisms in the data store 1310.
The data store 1310 is operable, through logic associated
therewith, to receive instructions from the application server
1308 and obtain, update or otherwise process data in
response thereto. In one example, a user, through a device
operated by the user, might submit a search request for a
certain type of item. In this case, the data store might access
the user information to verify the identity of the user and can
access the catalog detail information to obtain information
about items of that type. The information then can be
returned to the user, such as in a results listing on a web page
that the user is able to view via a browser on the user device
1302. Information for a particular item of interest can be
viewed in a dedicated page or window of the browser. It
should be noted, however, that embodiments of the present
disclosure are not necessarily limited to the context of web
pages, but may be more generally applicable to processing
requests in general, where the requests are not necessarily
requests for content.

Each server typically will include an operating system
that provides executable program instructions for the general
administration and operation of that server and typically will
include a computer-readable storage medium (e.g., a hard
disk, random access memory, read only memory, etc.) stor-
ing instructions that, when executed by a processor of the
server, allow the server to perform its intended functions.
Suitable implementations for the operating system and gen-
eral functionality of the servers are known or commercially
available and are readily implemented by persons having
ordinary skill in the art, particularly in light of the disclosure
herein.

The environment in one embodiment is a distributed
computing environment utilizing several computer systems
and components that are interconnected via communication
links, using one or more computer networks or direct
connections. However, it will be appreciated by those of
ordinary skill in the art that such a system could operate
equally well in a system having fewer or a greater number
of components than are illustrated in FIG. 13. Thus, the

US 9,448,827 Bl

23
depiction of the system 1300 in FIG. 13 should be taken as
being illustrative in nature and not limiting to the scope of
the disclosure.

The various embodiments further can be implemented in
a wide variety of operating environments, which in some
cases can include one or more user computers, computing
devices or processing devices which can be used to operate
any of a number of applications. User or client devices can
include any of a number of general purpose personal com-
puters, such as desktop, laptop or tablet computers running
a standard operating system, as well as cellular, wireless and
handheld devices running mobile software and capable of
supporting a number of networking and messaging proto-
cols. Such a system also can include a number of worksta-
tions running any of a variety of commercially-available
operating systems and other known applications for pur-
poses such as development and database management.
These devices also can include other electronic devices, such
as dummy terminals, thin-clients, gaming systems and other
devices capable of communicating via a network.

Various embodiments of the present disclosure utilize at
least one network that would be familiar to those skilled in
the art for supporting communications using any of a variety
of commercially-available protocols, such as Transmission
Control Protocol/Internet Protocol (“TCP/IP”), protocols
operating in various layers of the Open System Intercon-
nection (“OSI”) model, File Transfer Protocol (“FTP”),
Universal Plug and Play (“UpnP”), Network File System
(“NFS”), Common Internet File System (“CIFS”) and
AppleTalk. The network can be, for example, a local area
network, a wide-area network, a virtual private network, the
Internet, an intranet, an extranet, a public switched telephone
network, an infrared network, a wireless network and any
combination thereof.

In embodiments utilizing a web server, the web server can
run any of a variety of server or mid-tier applications,
including Hypertext Transfer Protocol (“HTTP”) servers,
FTP servers, Common Gateway Interface (“CGI”) servers,
data servers, Java servers and business application servers.
The server(s) also may be capable of executing programs or
scripts in response to requests from user devices, such as by
executing one or more web applications that may be imple-
mented as one or more scripts or programs written in any
programming language, such as Java®, C, C# or C++, or any
scripting language, such as Perl, Python or TCL, as well as
combinations thereof. The server(s) may also include data-
base servers, including without limitation those commer-
cially available from Oracle®, Microsoft®, Sybase® and
IBM®.

The environment can include a variety of data stores and
other memory and storage media as discussed above. These
can reside in a variety of locations, such as on a storage
medium local to (and/or resident in) one or more of the
computers or remote from any or all of the computers across
the network. In a particular set of embodiments, the infor-
mation may reside in a storage-area network (“SAN”)
familiar to those skilled in the art. Similarly, any necessary
files for performing the functions attributed to the comput-
ers, servers or other network devices may be stored locally
and/or remotely, as appropriate. Where a system includes
computerized devices, each such device can include hard-
ware elements that may be electrically coupled via a bus, the
elements including, for example, at least one central pro-
cessing unit (“CPU” or “processor”), at least one input
device (e.g., a mouse, keyboard, controller, touch screen or
keypad) and at least one output device (e.g., a display
device, printer or speaker). Such a system may also include

10

15

20

25

30

35

40

45

50

55

60

65

24

one or more storage devices, such as disk drives, optical
storage devices and solid-state storage devices such as
random access memory (“RAM”™) or read-only memory
(“ROM”), as well as removable media devices, memory
cards, flash cards, etc.

Such devices also can include a computer-readable stor-
age media reader, a communications device (e.g., a modem,
a network card (wireless or wired), an infrared communi-
cation device, etc.) and working memory as described
above. The computer-readable storage media reader can be
connected with, or configured to receive, a computer-read-
able storage medium, representing remote, local, fixed and/
or removable storage devices as well as storage media for
temporarily and/or more permanently containing, storing,
transmitting and retrieving computer-readable information.
The system and various devices also typically will include a
number of software applications, modules, services or other
elements located within at least one working memory
device, including an operating system and application pro-
grams, such as a client application or web browser. It should
be appreciated that alternate embodiments may have numer-
ous variations from that described above. For example,
customized hardware might also be used and/or particular
elements might be implemented in hardware, software (in-
cluding portable software, such as applets) or both. Further,
connection to other computing devices such as network
input/output devices may be employed.

Storage media and computer readable media for contain-
ing code, or portions of code, can include any appropriate
media known or used in the art, including storage media and
communication media, such as, but not limited to, volatile
and non-volatile, removable and non-removable media
implemented in any method or technology for storage and/or
transmission of information such as computer readable
instructions, data structures, program modules or other data,
including RAM, ROM, Electrically Erasable Programmable
Read-Only Memory (“EEPROM”), flash memory or other
memory technology, Compact Disc Read-Only Memory
(“CD-ROM”), digital versatile disk (DVD) or other optical
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices or any other
medium which can be used to store the desired information
and which can be accessed by the system device. Based on
the disclosure and teachings provided herein, a person of
ordinary skill in the art will appreciate other ways and/or
methods to implement the various embodiments.

The specification and drawings are, accordingly, to be
regarded in an illustrative rather than a restrictive sense. It
will, however, be evident that various modifications and
changes may be made thereunto without departing from the
broader spirit and scope of the invention as set forth in the
claims.

Other variations are within the spirit of the present
disclosure. Thus, while the disclosed techniques are suscep-
tible to various modifications and alternative constructions,
certain illustrated embodiments thereof are shown in the
drawings and have been described above in detail. It should
be understood, however, that there is no intention to limit the
invention to the specific form or forms disclosed, but on the
contrary, the intention is to cover all modifications, alterna-
tive constructions and equivalents falling within the spirit
and scope of the invention, as defined in the appended
claims.

The use of the terms “a” and “an” and “the” and similar
referents in the context of describing the disclosed embodi-
ments (especially in the context of the following claims) are
to be construed to cover both the singular and the plural,

US 9,448,827 Bl

25

unless otherwise indicated herein or clearly contradicted by
context. The terms “comprising,” “having,” “including” and
“containing” are to be construed as open-ended terms (i.e.,
meaning “including, but not limited to,”) unless otherwise
noted. The term “connected,” when unmodified and refer-
ring to physical connections, is to be construed as partly or
wholly contained within, attached to or joined together, even
if there is something intervening. Recitation of ranges of
values herein are merely intended to serve as a shorthand
method of referring individually to each separate value
falling within the range, unless otherwise indicated herein
and each separate value is incorporated into the specification
as if it were individually recited herein. The use of the term
“set” (e.g., “a set of items™) or “subset” unless otherwise
noted or contradicted by context, is to be construed as a
nonempty collection comprising one or more members.
Further, unless otherwise noted or contradicted by context,
the term “subset” of a corresponding set does not necessarily
denote a proper subset of the corresponding set, but the
subset and the corresponding set may be equal.

Conjunctive language, such as phrases of the form “at
least one of A, B, and C,” or “at least one of A, B and C,”
unless specifically stated otherwise or otherwise clearly
contradicted by context, is otherwise understood with the
context as used in general to present that an item, term, etc.,
may be either A or B or C, or any nonempty subset of the set
of A and B and C. For instance, in the illustrative example
of a set having three members used in the above conjunctive
phrase, “at least one of A, B, and C” and “at least one of A,
B and C” refers to any of the following sets: {A}, {B}, {C},
{A, B}, {A, C}, {B, C}, {A, B, C}. Thus, such conjunctive
language is not generally intended to imply that certain
embodiments require at least one of A, at least one of B and
at least one of C to each be present.

Operations of processes described herein can be per-
formed in any suitable order unless otherwise indicated
herein or otherwise clearly contradicted by context. Pro-
cesses described herein (or variations and/or combinations
thereof) may be performed under the control of one or more
computer systems configured with executable instructions
and may be implemented as code (e.g., executable instruc-
tions, one or more computer programs or one or more
applications) executing collectively on one or more proces-
sors, by hardware or combinations thereof. The code may be
stored on a computer-readable storage medium, for example,
in the form of a computer program comprising a plurality of
instructions executable by one or more processors. The
computer-readable storage medium may be non-transitory.

The use of any and all examples, or exemplary language
(e.g., “such as”) provided herein, is intended merely to better
illuminate embodiments of the invention and does not pose
a limitation on the scope of the invention unless otherwise
claimed. No language in the specification should be con-
strued as indicating any non-claimed element as essential to
the practice of the invention.

Preferred embodiments of this disclosure are described
herein, including the best mode known to the inventors for
carrying out the invention. Variations of those preferred
embodiments may become apparent to those of ordinary
skill in the art upon reading the foregoing description. The
inventors expect skilled artisans to employ such variations
as appropriate and the inventors intend for embodiments of
the present disclosure to be practiced otherwise than as
specifically described herein. Accordingly, the scope of the
present disclosure includes all modifications and equivalents
of the subject matter recited in the claims appended hereto
as permitted by applicable law. Moreover, any combination

10

15

20

25

30

35

40

45

50

55

60

26

of the above-described elements in all possible variations
thereof is encompassed by the scope of the present disclo-
sure unless otherwise indicated herein or otherwise clearly
contradicted by context.

All references, including publications, patent applications
and patents, cited herein are hereby incorporated by refer-
ence to the same extent as if each reference were individu-
ally and specifically indicated to be incorporated by refer-
ence and were set forth in its entirety herein.

What is claimed is:

1. A computer-implemented method for suspending a
guest computing system while waiting for a response to a
request and for reclaiming computer system memory from
the guest computing system while waiting for the response,
comprising:

under the control of one or more computer systems

configured with executable instructions,
issuing the request from the guest computing system to
a second computing system that is configured to at
least receive and respond to the request;
as a result of determining the response to the request
will take a length of time greater than a threshold
length of time, at least:
constructing a listener stub configured to at least
receive the response and comprising at least:
a handling plan that at least includes a set of
instructions for receiving the response; and
a listener socket configured to at least receive a
network communication from the second com-
puting system;
transferring the listener stub to a stub domain;
suspending the guest computing system; and
reclaiming at least a portion of the computer system
memory from the guest computing system; and
as a result of the listener stub receiving the response
from the second computing system, at least:
executing one or more of the instructions in the
handling plan according to the response received;
restoring the guest computing system; and
forwarding the response from the stub domain to the
guest computing system.

2. The computer-implemented method of claim 1,
wherein the threshold length of time is based at least in part
on a length of time to suspend and restore the guest
computing system.

3. The computer-implemented method of claim 1,
wherein the threshold length of time is based at least in part
on an amount of available computer system memory on the
guest computing system.

4. The computer-implemented method of claim 1,
wherein the listener socket is created by the guest computing
system and transferred to the stub domain as part of the
listener stub.

5. The computer-implemented method of claim 1,
wherein the listener socket is created by the stub domain
based at least in part on one or more configuration param-
eters sent from the guest computing system to the stub
domain as part of the listener stub.

6. The computer-implemented method of claim 1,
wherein:

the listener stub further comprises a timer that is started

when the listener stub is transferred to the stub domain;
and

the stub domain is configured to respond to an expiration

of the timer by at least:
restoring the guest computing system;

US 9,448,827 Bl

27

restoring the computer system memory to the guest
computing system; and

forwarding a timeout response from the stub domain to
the guest computing system.

7. A computer system, comprising:

one or more processors; and

memory including executable instructions that, when

executed by the one or more processors, cause the
computer system that is waiting for a response to a
request issued by a guest computing system in a first
domain of a virtualization environment, to at least:

as a result of determining the response to the request will

take a length of time greater than a threshold length of

time:

transfer a listener stub configured to at least receive the
response to a stub domain of the virtualization envi-
ronment, the listener stub comprising a listener
socket;

suspend the guest computing system; and

reclaim resources from the guest computing system, the
resources including computer system memory; and

as a result of the listener stub receiving at least a portion

of the response, resulting in a received response, cause

the listener stub to at least:

restore the guest computing system; and

forward the response to the guest computing system.

8. The computer system of claim 7, wherein the instruc-
tions further comprise instructions that, when executed by
the one or more processors, cause the system, prior to
constructing the listener stub, determine whether to con-
struct the listener stub based at least in part on a determi-
nation that an expected length of time to obtain the response
to the request exceeds the threshold length of time.

9. The computer system of claim 8, wherein the threshold
length of time is based at least in part on one or more
measurements of available system resources.

10. The computer system of claim 7, wherein the instruc-
tions further comprise instructions that, when executed by
the one or more processors, cause the system, prior to
constructing the listener stub, to determine whether to con-
struct the listener stub based at least in part on a nomination
sent from the guest computing system to a controlling
domain wherein the nomination at least contains a notifica-
tion to suspend the guest computing system.

11. The computer system of claim 7, wherein:

the listener socket is configured to at least receive the

response over a network attached to the computer

system; and

the listener stub comprises a handling plan at least
comprising a set of instructions, one or more of
which may be executed when the response is
received.

12. The computer system of claim 7, wherein:

the stub domain is configured to at least:

receive the response; and

perform one or more actions as a result of receiving the
response according to one or more sets of instruc-
tions for the listener stub.

13. The computer system of claim 7, wherein, to restore
the guest computing system, the listener stub is configured
to wait until the received response is completely received.

14. The computer system of claim 7, wherein the
resources include at least computer system memory.

15. The computer system of claim 7, wherein forwarding
the response to the guest computing system causes the
computer system to at least:

5

20

25

30

40

45

55

28

create a duplicate copy of a network socket where the

response is received; and

forward the duplicate copy of the network socket to the

guest computing system.

16. The computer system of claim 7, wherein the response
comprises a first portion that is received before the computer
system is restored and a second portion that is received after
the computer system is restored, and forwarding the
response to the guest computing system causes the computer
system to at least:

buffer the first portion of the response to result in a

buffered first portion of the response;

forward the buffered first portion of the response to the

guest computing system to result in a forwarded buff-
ered first portion of the response; and

join the forwarded buffered first portion of the response

with the second portion of the response.

17. A non-transitory computer-readable storage medium
having collectively stored thereon executable instructions
that, when executed by one or more processors of a com-
puter system, cause the computer system to at least:

as a result of determining a response to a request will take

a length of time greater than a threshold length of time,

cause a guest computing system in first domain of a

virtualization environment to wait for the response by

at least:

transferring, to a stub domain of the virtualization
environment, a listener stub configured to at least
receive the response, the listener stub comprising a
listener socket; and

reclaiming resources from the guest computing system,
the resources comprising computer system memory;
and

as a result of the listener stub receiving at least a portion

of the response, cause the listener stub to process the
response by:

restoring resources to the guest computing system; and
forwarding the response to the guest computing system.

18. The non-transitory computer-readable storage
medium of claim 17, wherein the instructions further com-
prise instructions that, when executed by the one or more
processes, cause the computer system to determine whether
to implement the listener stub based at least in part on an
expected amount of time to receive the response from the
stub computing system.

19. The non-transitory computer-readable storage
medium of claim 17, wherein the instructions further com-
prise instructions that, when executed by the one or more
processes, cause the computer system to, prior to imple-
menting the listener stub, determine whether to implement
the listener stub based at least in part on the threshold length
of'time, wherein the threshold length of time is based at least
in part on one or more measurements of availability of the
resources.

20. The non-transitory computer-readable storage
medium of claim 17, wherein the instructions that cause the
computer system to reclaim resources from the guest com-
puting system further include instructions that cause the
computer system to suspend the guest computing system.

21. The non-transitory computer-readable storage
medium of claim 17, wherein the instructions that cause the
computer system to restore resources from the guest com-
puting system further include instructions that cause the
computer system to restore the guest computing system from
a suspended state.

US 9,448,827 Bl

29

22. The non-transitory computer-readable storage
medium of claim 17, wherein the instructions further com-
prise instructions that cause the computer system to:

receive the response; and

perform one or more actions as a result of receiving the

response according to one or more sets of instructions
in the listener stub.

23. The non-transitory computer-readable storage
medium of claim 17, wherein the guest computing system
resources include at least computer system memory.

24. The non-transitory computer-readable storage
medium of claim 17, wherein the instructions that cause the
computer system to forward the response to the guest
computing system further include instructions that cause the
computer system to:

buffer the portion of the response that is received before

resources are restored to the guest computing system to
result in a buffered portion of the response;

forward the buffered portion of the response to the guest

computing system to result in a forwarded portion of
the response; and

join the forwarded portion of the response with any

portion of the response that is received after resources
are restored to the guest computing system.

#* #* #* #* #*

10

15

25

30

